📢 #Gate广场征文活动第二期# 正式啓動!
分享你對 $ERA 項目的獨特觀點,推廣ERA上線活動, 700 $ERA 等你來贏!
💰 獎勵:
一等獎(1名): 100枚 $ERA
二等獎(5名): 每人 60 枚 $ERA
三等獎(10名): 每人 30 枚 $ERA
👉 參與方式:
1.在 Gate廣場發布你對 ERA 項目的獨到見解貼文
2.在貼文中添加標籤: #Gate广场征文活动第二期# ,貼文字數不低於300字
3.將你的文章或觀點同步到X,加上標籤:Gate Square 和 ERA
4.徵文內容涵蓋但不限於以下創作方向:
ERA 項目亮點:作爲區塊鏈基礎設施公司,ERA 擁有哪些核心優勢?
ERA 代幣經濟模型:如何保障代幣的長期價值及生態可持續發展?
參與並推廣 Gate x Caldera (ERA) 生態周活動。點擊查看活動詳情:https://www.gate.com/announcements/article/46169。
歡迎圍繞上述主題,或從其他獨特視角提出您的見解與建議。
⚠️ 活動要求:
原創內容,至少 300 字, 重復或抄襲內容將被淘汰。
不得使用 #Gate广场征文活动第二期# 和 #ERA# 以外的任何標籤。
每篇文章必須獲得 至少3個互動,否則無法獲得獎勵
鼓勵圖文並茂、深度分析,觀點獨到。
⏰ 活動時間:2025年7月20日 17
阿里大模型又開源!能讀圖會識物,基於通義千問7B打造,可商用
來源:量子位
繼通義千問-7B(Qwen-7B)之後,阿里雲又推出了大規模視覺語言模型Qwen-VL,並且一上線就直接開源。
舉個🌰,我們輸入一張阿尼亞的圖片,通過問答的形式,Qwen-VL-Chat既能概括圖片內容,也能定位到圖片中的阿尼亞。
首個支持中文開放域定位的通用模型
先來整體看一下Qwen-VL系列模型的特點:
按場景來說,Qwen-VL可以用於知識問答、圖像問答、文檔問答、細粒度視覺定位等場景。
比如,有一位看不懂中文的外國友人去醫院看病,對著導覽圖一個頭兩個大,不知道怎麼去往對應科室,就可以直接把圖和問題丟給Qwen-VL,讓它根據圖片信息擔當翻譯。
視覺定位能力方面,即使圖片非常複雜人物繁多,Qwen-VL也能精準地根據要求找出綠巨人和蜘蛛俠。
研究人員在四大類多模態任務(Zero-shot Caption/VQA/DocVQA/Grounding)的標準英文測評中測試了Qwen-VL。
另外,研究人員構建了一套基於GPT-4打分機制的測試集TouchStone。
如果你對Qwen-VL感興趣,現在在魔搭社區和huggingface上都有demo可以直接試玩,鏈接文末奉上~
Qwen-VL支持研究人員和開發者進行二次開發,也允許商用,不過需要注意的是,商用的話需要先填寫問卷申請。
項目鏈接:
-聊天
論文地址: